
Seems fine, right? Rewrite in terms of lambda:

((lambda (loop-forever)

(loop-forever 10))

(lambda (x) (loop-forever x)))

Clearly, the loop-forever on the last line isn’t bound!
This is another feature we get “for free” from the top-level. To eliminate this mag-

ical force, we need to understand recursion explicitly, which we will do soon [REF].

8 Mutation: Structures and Variables
It’s time for another

Which of these is the same?

• f = 3

• o.f = 3

• f = 3

Assuming all three are in Java, the first and third could behave exactly like each
other or exactly like the second: it all depends on whether f is a local identifier (such
as a parameter) or a field of the object (i.e., the code is really this.f = 3).

In either case, we are asking the evaluator to permanently change the value bound
to f. This has important implications for other observers. Until now, for a given set
of inputs, a computation always returned the same value. Now, the answer depends on
when it was invoked: above, it depends on whether it was invoked before or after the
value of f was changed. The introduction of time has profound effects on reasoning
about programs.

However, there are really two quite different notions of change buried in the uni-
form syntax above. Changing the value of a field (o.f = 3 or this.f = 3) is ex-
tremely different from changing that of an identifier (f = 3 where f is bound inside
the method, not by the object). We will explore these in turn. We’ll tackle fields below,
and return to identifiers in section 8.2.

8.1 Mutable Structures
8.1.1 A Simple Model of Mutable Structures

Objects are a generalization of structures, as we will soon see [REF]. Therefore, fields
in objects are a generalization of fields in structures and to understand mutation, it is
mostly (but not entirely! [REF]) sufficient to understand mutable objects. To be even
more reductionist, we don’t need a structure to have many fields: a single one will
suffice. We call this a box. In Racket, boxes support just three operations:

box : ('a -> (boxof 'a))

unbox : ((boxof 'a) -> 'a)

set-box! : ((boxof 'a) 'a -> void)

41



Thus, box takes a value and wraps it in a mutable container. unbox extracts the current
value inside the container. Finally, set-box! changes the value in the container, and
in a typed language, the new value is expected to be type-consistent with what was
there before. You can thus think of a box as equivalent to a Java container class with
parameterized type, which has a single member field with a getter and setter: box is
the constructor, unbox is the getter, and set-box! is the setter. (Because there is only
one field, its name is irrelevant.)

class Box<T> {

private T the_value;

Box(T v) {

this.the_value = v;

}

T get() {

return the_value;

}

void set(T v) {

the_value = v;

}

}

Because we must sometimes mutate in groups (e.g., removing money from one
bank account and depositing it in another), it is useful to be able to sequence a group
of mutable operations. In Racket, begin lets you write a sequence of operations; it
evaluates them in order and returns the value of the last one.

Exercise

Define begin by desugaring into let (and hence into lambda).
This is an excellent
illustration of the
non-canonical
nature of
desguaring. We’ve
chosen to add to the
core a construct that
is certainly not
necessary. If our
goal was to shrink
the size of the
interpreter—
perhaps at some
cost to the size of
the input
program—we
would not make this
choice. But our
goal in this book is
to study pedagogic
interpreters, so we
choose a larger
language because it
is more instructive.

Even though it is possible to eliminate begin as syntactic sugar, it will prove ex-
tremely useful for understanding how mutation works. Therefore, we will add a simple,
two-term version of sequencing to the core.

8.1.2 Scaffolding

First, let’s extend our core language datatype:

(define-type ExprC

[numC (n : number)]

[idC (s : symbol)]

[appC (fun : ExprC) (arg : ExprC)]

[plusC (l : ExprC) (r : ExprC)]

[multC (l : ExprC) (r : ExprC)]

[lamC (arg : symbol) (body : ExprC)]

[boxC (arg : ExprC)]

[unboxC (arg : ExprC)]

[setboxC (b : ExprC) (v : ExprC)]

[seqC (b1 : ExprC) (b2 : ExprC)])

42



Observe that in a setboxC expression, both the box position and its new value are
expressions. The latter is unsurprising, but the former might be. It means we can write
programs such as this in corresponding Racket:

(let ([b0 (box 0)]

[b1 (box 1)])

(let ([l (list b0 b1)])

(begin

(set-box! (first l) 1)

(set-box! (second l) 2)

l)))

This evaluates to a list of boxes, the first containing 1 and the second 2. Observe that Your output may
look like '(#&1
#&2). The #&
notation is Racket’s
abbreviated
syntactic prefix for
“box”.

the first argument to the first set-box! instruction was (first l), i.e., an expression
that evaluated to a box, rather than just a literal box or an identifier. This is precisely
analogous to languages like Java, where one can (taking some type liberties) write

public static void main (String[] args) {

Box<Integer> b0 = new Box<Integer>(0);

Box<Integer> b1 = new Box<Integer>(1);

ArrayList<Box<Integer>> l = new ArrayList<Box<Integer>>();

l.add(b0);

l.add(b1);

l.get(0).set(1);

l.get(1).set(2);

}

Observe that l.get(0) is a compound expression being used to find the appropriate
box, and evaluates to the box object on which set is invoked.

For convenience, we will assume that we have implemented desguaring to provide
us with (a) let and (b) if necessary, more than two terms in a sequence (which can
be desugared into nested sequences). We will also sometimes write expressions in the
original Racket syntax, both for brevity (because the core language terms can grow
quite large and unwieldy) and so that you can run these same terms in Racket and
observe what answers they produce. As this implies, we are taking the behavior in
Racket—which is similar to the behavior in just about every mainstream language with
mutable objects and structures—as the reference behavior.

8.1.3 Interaction with Closures

Consider a simple counter:

(define new-loc

(let ([n (box 0)])

(lambda ()

43



(begin

(set-box! n (add1 (unbox n)))

(unbox n)))))

Every time it is invoked, it produces the next integer:
> (new-loc)

- number

1

> (new-loc)

- number

2

Why does this work? It’s because the box is created only once, and bound to n, and
then closed over. All subsequent mutations affect the same box. In contrast, swapping
two lines makes a big difference:

(define new-loc-broken

(lambda ()

(let ([n (box 0)])

(begin

(set-box! n (add1 (unbox n)))

(unbox n)))))

Observe:
> (new-loc-broken)

- number

1

> (new-loc-broken)

- number

1

In this case, a new box is allocated on every invocation of the function, so the answer
each time is the same (despite the mutation inside the procedure). Our implementation
of boxes should be certain to preserve this distinction.

The examples above hint at an implementation necessity. Clearly, whatever the en-
vironment closes over in new-loc must refer to the same box each time. Yet something
also needs to make sure that the value in that box is different each time! Look at it more
carefully: it must be lexically the same, but dynamically different. This distinction will
be at the heart of our implementation.

8.1.4 Understanding the Interpretation of Boxes

Let’s begin by reproducing our current interpreter:
<interp-take-1> ::=

(define (interp [expr : ExprC] [env : Env]) : Value

(type-case ExprC expr

[numC (n) (numV n)]

[idC (n) (lookup n env)]

44



[appC (f a) (local ([define f-value (interp f env)])

(interp (closV-body f-value)

(extend-env (bind (closV-arg f-value)

(interp a env))

(closV-env f-value))))]

[plusC (l r) (num+ (interp l env) (interp r env))]

[multC (l r) (num* (interp l env) (interp r env))]

[lamC (a b) (closV a b env)]

<boxC-case>

<unboxC-case>

<setboxC-case>

<seqC-case>))

Because we’ve introduced a new kind of value, the box, we have to update the set
of values:

<value-take-1> ::=

(define-type Value

[numV (n : number)]

[closV (arg : symbol) (body : ExprC) (env : Env)]

[boxV (v : Value)])

Two of these cases should be easy. When we’re given a box expression, we simply
evaluate it and return it wrapped in a boxV:

<boxC-case-take-1> ::=

[boxC (a) (boxV (interp a env))]

Similarly, extracting a value from a box is easy:
<unboxC-case-take-1> ::=

[unboxC (a) (boxV-v (interp a env))]

By now, you should be constructing a healthy set of test cases to make sure these
behave as you’d expect.

Of course, we haven’t done any hard work yet. All the interesting behavior is,
presumably, hidden in the treatment of setboxC. It may therefore surprise you that
we’re going to look at seqC first instead (and you’ll see why we included it in the
core).

Let’s take the most natural implementation of a sequence of two instructions:
<seqC-case-take-1> ::=

[seqC (b1 b2) (let ([v (interp b1 env)])

(interp b2 env))]

That is, we evaluate the first term, then the second, and return the result of the
second.

45



You should immediately spot something troubling. We bound the result of evaluat-
ing the first term, but didn’t subsequently do anything with it. That’s okay: presumably
the first term contained a mutation expression of some sort, and its value is uninterest-
ing (indeed, note that set-box! returns a void value). Thus, another implementation
might be this:

<seqC-case-take-2> ::=

[seqC (b1 b2) (begin

(interp b1 env)

(interp b2 env))]

Not only is this slightly dissatisfying in that it just uses the analogous Racket se-
quencing construct, it still can’t possibly be right! This can only work only if the result
of the mutation is being stored somewhere. But because our interpreter only computes
values, and does not perform any mutation itself, any mutations in (interp b1 env)

are completely lost. This is obviously not what we want.

8.1.5 Can the Environment Help?

Here is another example that can help:

(let ([b (box 0)])

(begin (begin (set-box! b (+ 1 (unbox b)))

(set-box! b (+ 1 (unbox b))))

(unbox b)))

In Racket, this evaluates to 2.
Exercise

Represent this expression in ExprC.

Let’s consider the evaluation of the inner sequence. In both cases, the expression
(the representation of (set-box! ...)) is exactly identical. Yet something is chang-
ing underneath, because these cause the value of the box to go from 0 to 2! We can
“see” this even more clearly if instead we evaluate

(let ([b (box 0)])

(+ (begin (set-box! b (+ 1 (unbox b)))

(unbox b))

(begin (set-box! b (+ 1 (unbox b)))

(unbox b))))

which evaluates to 3. Here, the two calls to interp in the rule for addition are sending
exactly the same textual expression in both cases. Yet somehow the effects from the left
branch of the addition are being felt in the right branch, and we must rule out spukhafte
Fernwirkung.

If the interpreter is being given precisely the same expression, how can it possibly
avoid producing precisely the same answer? The most obvious way is if the inter-
preter’s other parameter, the environment were somehow different. As of now the

46



exact same environment is sent to both both branches of the sequence and both arms of
the addition, so our interpreter—which produces the same output every time on a given
input—cannot possibly produce the answers we want.

Here is what we know so far:

1. We must somehow make sure the interpreter is fed different arguments on calls
that are expected to potentially produce different results.

2. We must return from the interpreter some record of the mutations made when
evaluating its argument expression.

Because the expression is what it is, the first point suggests that we might try to use the
environment to reflect the differences between invocations. In turn, the second point
suggests that each invocation of the interpreter should also return the environment, so
it can be passed to the next invocation. Roughly, then, the type of the interpreter might
become:

; interp : ExprC * Env -> Value * Env

That is, the interpreter consumes an expression and environment; it evaluates in that
environment, updating it as it proceeds; when the expression is done evaluating, the
interpreter returns the answer (as it did before), along with an updated environment,
which in turn is sent to the next invocation of the interpreter. And the treatment of
setboxC would somehow impact the environment to reflect the mutation.

Before we dive into the implementation, however, we should consider the conse-
quences of such a change. The environment already serves an important purpose: it
holds deferred substitutions. In that respect, it already has a precise semantics—given
by substitution—and we must be careful to not alter that. One consequence of its tie to
substitution is that it is also the repository of lexical scope information. If we were to
allow the extended environment escape from one branch of addition and be used in the
other, for instance, consider the impact on the equivalent of the following program:

(+ (let ([b (box 0)])

1)

b)

It should be evident that this program has an error: b in the right branch of the addition
is unbound (the scope of the b in the left branch ends with the closing of the let—if
this is not evident, desugar the above expression to use functions). But the extended
environment at the end of interpreting the let clearly has b bound in it.

Exercise

Work out the above problem in detail and make sure you understand it.

You could try various other related proposals, but they are likely to all have similar
failings. For instance, you may decide that, because the problem has to do with addi-
tional bindings in the environment, you will instead remove all added bindings in the
returned environment. Sounds attractive? Did you remember we have closures?

Exercise

47



Consider the representation of the following program:

(let ([a (box 1)])

(let ([f (lambda (x) (+ x (unbox a)))])

(begin

(set-box! a 2)

(f 10))))

What problems does this example cause?

Rather, we should note that while the constraints described above are all valid, the
solution we proposed is not the only one. What we require are the two conditions
enumerated above; observe that neither one actually requires the environment to be
the responsible agent. Indeed, it is quite evident that the environment cannot be the
principal agent.

8.1.6 Introducing the Store

The preceding discussion tells us that we need two repositories to accompany the ex-
pression, not one. One of them, the environment, continues to be responsible for main-
taining lexical scope. But the environment cannot directly map identifiers to their value,
because the value might change. Instead, something else needs to be responsible for
maintaining the dynamic state of mutated boxes. This latter data structure is called the
store.

Like the environment, the store is a partial map. Its domain could be any abstract
set of names, but it is natural to think of these as numbers, meant to stand for memory
locations. This is because the store in the semantics maps directly onto (abstracted)
physical memory in the machine, which is traditionally addressed by numbers. Thus
the environment maps names to locations, and the store maps locations to values:

(define-type-alias Location number)

(define-type Binding

[bind (name : symbol) (val : Location)])

(define-type-alias Env (listof Binding))

(define mt-env empty)

(define extend-env cons)

(define-type Storage

[cell (location : Location) (val : Value)])

(define-type-alias Store (listof Storage))

(define mt-store empty)

(define override-store cons)

We’ll also equip ourselves with a function to look up values in the store, just as we
already have one for the environment (which now returns locations instead):

48



(define (lookup [for : symbol] [env : Env]) : Location

...)

(define (fetch [loc : Location] [sto : Store]) : Value

...)

With this, we can refine our notion of values to the correct one:

(define-type Value

[numV (n : number)]

[closV (arg : symbol) (body : ExprC) (env : Env)]

[boxV (l : Location)])

Exercise

Fill in the bodies of lookup and fetch.

8.1.7 Interpreting Boxes

Now we have something that the environment can return, updated, reflecting mutations
during the evaluation of the expression, without having to change the environment in
any way. Because a function can return only one value, let’s define a data structure to
hold the new result from the interpreter:

(define-type Result

[v*s (v : Value) (s : Store)])

Thus the interpreter’s type becomes:
<interp-mut-struct> ::=

(define (interp [expr : ExprC] [env : Env] [sto : Store]) : Result

<ms-numC-case>
<ms-idC-case>
<ms-appC-case>
<ms-plusC/multC-case>
<ms-lamC-case>
<ms-boxC-case>
<ms-unboxC-case>
<ms-setboxC-case>
<ms-seqC-case>)

The easiest one to dispatch is numbers. Remember that we have to return the store
reflecting all mutations that happened while evaluating the given expression. Because
a number is a constant, no mutations could have happened, so the returned store is the
same as the one passed in:

<ms-numC-case> ::=

[numC (n) (v*s (numV n) sto)]

49



A similar argument applies to closure creation; observe that we are speaking of the
creation, not use, of closures:

<ms-lamC-case> ::=

[lamC (a b) (v*s (closV a b env) sto)]

Identifiers are almost as straightforward, though if you are simplistic, you’ll get a
type error that will alert you that to obtain a value, you must now look up both in the
environment and in the store:

<ms-idC-case> ::=

[idC (n) (v*s (fetch (lookup n env) sto) sto)]

Notice how lookup and fetch compose to produce the same result that lookup
alone produced before.

Now things get interesting.
Let’s take sequencing. Clearly, we need to interpret the two terms:

(interp b1 env sto)

(interp b2 env sto)

Oh, but wait. The whole point was to evaluate the second term in the store returned by
the first one—otherwise there would have been no point to all these changes. Therefore,
instead we must evaluate the first term, capture the resulting store, and use it to evaluate
the second. (Evaluating the first term also yields its value, but sequencing ignores this
value and assumes the first time was run purely for its potential mutations.) We will
write this in a stylized manner:

<ms-seqC-case> ::=

[seqC (b1 b2) (type-case Result (interp b1 env sto)

[v*s (v-b1 s-b1)

(interp b2 env s-b1)])]

This says to (interp b1 env sto); name the resulting value and store v-b1 and
s-b1, respectively; and evaluate the second term in the store from the first: (interp
b2 env s-b1). The result will be the value and store returned by the second term,
which is what we expect. The fact that the first term’s effect is only on the store can be
read from the code because, though we bind v-b1, we never subsequently use it.

Do Now!

Spend a moment contemplating the code above. You’ll soon need to adjust
your eyes to read this pattern fluently.

Now let’s move on to the binary arithmetic primitives. These are similar to se-
quencing in that they have two sub-terms, but in this case we really do care about the
value from each branch. As usual, we’ll look at only plusC since multC is virtually
identical.

<ms-plusC/multC-case> ::=

50



[plusC (l r) (type-case Result (interp l env sto)

[v*s (v-l s-l)

(type-case Result (interp r env s-l)

[v*s (v-r s-r)

(v*s (num+ v-l v-r) s-r)])])]

Observe that we’ve unfolded the sequencing pattern out another level, so we can
hold on to both results and supply them to num+.

Here’s an important distinction. When we evaluate a term, we usually use the same
environment for all its sub-terms in accordance with the scoping rules of the language.
The environment thus flows in a recursive-descent pattern. In contrast, the store is
threaded: rather than using the same store in all branches, we take the store from one
branch and pass it on to the next, and take the result and send it back out. This pattern
is called store-passing style.

Now the penny drops. We see that store-passing style is our secret ingredient: it
enables the environment to preserve lexical scope while still giving a binding structure
that can reflect changes. Our intution told us that the environment had to somehow
participate in obtaining different results for the same expression, and we can now see
how it does: not directly, by itself changing, but indirectly, by referring to the store,
which updates. Now we only need to see how the store itself “changes”.

Let’s begin with boxing. To store a value in a box, we have to first allocate a new
place in the store where its value will reside. The value corresponding to a box will
then remember this location, for use in box mutation.

<ms-boxC-case> ::=

[boxC (a) (type-case Result (interp a env sto)

[v*s (v-a s-a)

(let ([where (new-loc)])

(v*s (boxV where)

(override-store (cell where v-a)

s-a)))])]

Do Now!

Observe that we have relied above on new-loc, which is itself imple-
mented in terms of boxes! This is outright cheating. How would you mod-
ify the interpreter so that we no longer need an mutating implementation
of new-loc?

To eliminate this style of new-loc, the simplest option would be to add yet another
parameter to and return value from the interpreter, which represents the largest address
used so far. Every operation that allocates in the store would return an incremented
address, while all others would return it unchanged. In other words, this is precisely
another application of the store-passing pattern. Writing the interpreter this way would
make it extremely unwieldy and might obscure the more important use of store-passing
for the store itself, which is why we have not done so. However, it is important to make
sure that we can: that’s what tells us that we are not reliant on boxes to add boxes to
the language.

51



Now that boxes are recording the location in memory, getting the value correspond-
ing to them is easy.

<ms-unboxC-case> ::=

[unboxC (a) (type-case Result (interp a env sto)

[v*s (v-a s-a)

(v*s (fetch (boxV-l v-a) s-a) s-a)])]

It’s the same pattern we saw before, where we have to use fetch to obtain the
actual value residing at that location. Note that we are relying on Racket to halt with
an error if the underlying value isn’t actually a boxV; otherwise it would be dangerous
to not check, since this would be tantamount to dereferencing arbitrary memory (as C
programs can, sometimes with disastrous consequences).

Let’s now see how to update the value held in a box. First we have to evaluate the
box expression to obtain a box, and the value expression to obtain the new value to
store in it. The box’s value is going to be a boxV holding a location.

In principle, we want to “change”, or override, the value at that location in the store.
We can do this in two ways.

1. One is to traverse the store, find the old binding for that location, and replace it
with the new one, copying all the other store bindings unchanged.

2. The other, lazier, option is to simply extend the store with a new binding for that
location, which works provided we always obtain the most recent binding for a
location (which is how lookup works in the environment, so fetch presumably
also does in the store).

The code below is written to be independent of these options:
<ms-setboxC-case> ::=

[setboxC (b v) (type-case Result (interp b env sto)

[v*s (v-b s-b)

(type-case Result (interp v env s-b)

[v*s (v-v s-v)

(v*s v-v

(override-store (cell (boxV-l v-

b)

v-v)

s-v))])])]

However, because we’ve implemented override-store as cons above, we’ve
actually taken the lazier (and slightly riskier, because of its dependence on the imple-
mentation of fetch) option.

Exercise

Implement the other version of store alteration, whereby we update an
existing binding and thereby avoid multiple bindings for a location in the
store.

52



Exercise

When we look for a location to override the value stored at it, can the
location fail to be present? If so, write a program that demonstrates this. If
not, explain what invariant of the interpreter prevents this from happening.

Alright, we’re now done with everything other than application! Most of applica-
tion should already be familiar: evaluate the function position, evaluate the argument
position, interpret the closure body in an extension of the closure’s environment...but
how do stores interact with this?

<ms-appC-case> ::=

[appC (f a)

(type-case Result (interp f env sto)

[v*s (v-f s-f)

(type-case Result (interp a env s-f)

[v*s (v-a s-a)

<ms-appC-case-main>])])]

Let’s start by thinking about extending the closure environment. The name we’re
extending it with is obviously the name of the function’s formal parameter. But what
location do we bind it to? To avoid any confusion with already-used locations (a con-
fusion we will explicitly introduce later! [REF]), let’s just allocate a new location.
This location is used in the environment, and the value of the argument resides at this
location in the store:

<ms-appC-case-main> ::=

(let ([where (new-loc)])

(interp (closV-body v-f)

(extend-env (bind (closV-arg v-f)

where)

(closV-env v-f))

(override-store (cell where v-a) s-a)))

Because we have not said the function parameter is mutable, there is no real need
to have implemented procedure calls this way. We could instead have followed the
same strategy as before. Indeed, observe that the mutability of this location will never
be used: only setboxC changes what’s in an existing store location (the override-

store above is technically a store initialization), and then only when they are referred
to by boxVs, but no box is being allocated above. However, we have chosen to imple- You could call this

the useless app
store.

ment application this way for uniformity, and to reduce the number of cases we’d have
to handle.

Exercise

It’s a useful exercise to try to limit the use of store locations only to boxes.
How many changes would you need to make?

53



8.1.8 The Bigger Picture

Even though we’ve finished the implementation, there are still many subtleties and
insights to discuss.

1. Implicit in our implementation is a subtle and important decision: the order of
evaluation. For instance, why did we not implement addition thus?

[plusC (l r) (type-case Result (interp r env sto)

[v*s (v-r s-r)

(type-case Result (interp l env s-r)

[v*s (v-l s-l)

(v*s (num+ v-l v-r) s-l)])])]

It would have been perfectly consistent to do so. Similarly, embodied in the
pattern of store-passing is the decision to evaluate the function position before
the argument. Observe that:

(a) Previously, we delegated such decisions to the underlying language imple-
mentation. Now, store-passing has forced us to sequentialize the compu-
tation, and hence make this decision ourselves (whether we realized it or
not).

(b) Even more importantly, this decision is now a semantic one. Before there
were mutations, one branch of an addition, for instance, could not affect
the value produced by the other branch. Because each branch can have The only effect they

could have was
halting with an
error or failing to
terminate—which,
to be sure, are
certainly observable
effects, but at a
much more gross
level. A program
would not terminate
with two different
answers depending
on the order of
evaluation.

mutations that impact the value of the other, we must choose some order
so that programmers can predict what their program is going to do! Being
forced to write a store-passing interpreter has made this clear.

2. Observe that in the application rule, we are passing along the dynamic store, i.e.,
the one resulting from evaluating both function and argument. This is precisely
the opposite of what we said to do with the environment. This distinction is
critical. The store is, in effect, “dynamically scoped”, in that it reflects the history
of the computation, not its lexical shape. Because we are already using the term
“scope” to refer to the bindings of identifiers, however, it would be confusing to
say “dynamically scoped” to refer to the store. Instead, we simply say that it is
persistent.

Languages sometimes dangerously conflate these two. In C, for instance, values
bound to local identifiers are allocated (by default) on the stack. However, the
stack matches the environment, and hence disappears upon completion of the
call. If the call, however, returned references to any of these values, these refer-
ences are now pointing to unused or even overridden memory: a genuine source
of serious errors in C programs. The problem is that the values themselves per-
sist; it is only the identifiers that refer to them that have lexical scope.

54



3. We have already discussed how there are two strategies for overriding the store:
to simply extend it (and rely on fetch to extract the newest one) or to “search-
and-replace”. The latter strategy has the virtue of not holding on to useless store
bindings that will can never be obtained again.

However, this does not cover all the wasted memory. Over time, we cease to be
able to access some boxes entirely: e.g., if they are bound to only one identi-
fier, and that identifier is no longer in scope. These locations are called garbage.
Thinking more conceptually, garbage locations are those whose elimination does
not have any impact on the value produced by a program. There are many strate-
gies for identifying and reclaiming garbage locations, usually called garbage
collection [REF].

4. It’s very important to evaluate every expression position and thread the store that
results from it. Consider, for instance, this implementation of unboxC:

[unboxC (a) (type-case Result (interp a env sto)

[v*s (v-a s-a)

(v*s (fetch (boxV-l v-a) sto) s-a)])]

Did you notice? We fetched the location from sto, not s-a. But sto reflects
mutations up to but before the evaluation of the unboxC expression, not any
within it. Could there possibly be any? Mais oui!

(let ([b (box 0)])

(unbox (begin (set-box! b 1)

b)))

With the incorrect code above, this would evaluate to 0 rather than 1.

5. Here’s another, similar, error:

[unboxC (a) (type-case Result (interp a env sto)

[v*s (v-a s-a)

(v*s (fetch (boxV-l v-a) s-a) sto)])]

How do we break this? Well, we’re returning the old store, the one before any
mutations in the unboxC happened. Thus, we just need the outside context to
depend on one of them.

(let ([b (box 0)])

(+ (unbox (begin (set-box! b 1)

b))

(unbox b)))

This should evaluate to 2, but because the store being returned is one where b’s
location is bound to the representation of 0, the result is 1.

If we combined both bugs above—i.e., using sto twice in the last line instead of
s-a twice—this expression would evaluate to 0 rather than 2.

Exercise

55



Go through the interpreter; replace every reference to an updated store
with a reference to one before update; make sure your test cases catch
all the introduced errors!

6. Observe that these uses of “old” stores enable us to perform a kind of time travel:
because mutation introduces a notion of time, these enable us to go back in time
to when the mutation had not yet occurred. This sounds both interesting and
perverse; does it have any use?

It does! Imagine that instead of directly mutating the store, we introduce the
idea of a journal of intended updates to the store. The journal flows in a threaded
manner just like the real store itself. Some instruction creates a new journal;
after that, all lookups first check the journal, and only if the journal cannot find a
binding for a location is it looked for in the actual store. There are two other new
instructions: one to discard the journal (i.e., perform time travel), and the other
to commit it (i.e., all of its edits get applied to the real store).

This is the essence of software transactional memory. Each thread maintains its
own journal. Thus, one thread does not see the edits made by the other before
committing (because each thread sees only its own journal and the global store,
but not the journals of other threads). At the same time, each thread gets its own
consistent view of the world (it sees edits it made, because these are recorded in
the journal). If the transaction ends successfully, all threads atomically see the
updated global store. If the transaction aborts, the discarded journal takes with it
all changes and the state of the thread reverts (modulo global changes committed
by other threads).

Software transactional memory offers one of the most sensible approaches to
tackling the difficulties of multi-threaded programming, if we insist on program-
ming with shared mutable state. Because most computers have only one global
store, however, maintaining the journals can be expensive, and much effort goes
into optimizing them. As an alternative, some hardware architectures have be-
gun to provide direct support for transactional memory by making the creation,
maintenance, and commitment of journals as efficient as using the global store,
removing one important barrier to the adoption of this idea.

Exercise

Augment the language with the journal features of software transac-
tional memory journal.

Exercise

An alternate implementation strategy is to have the environment map names
to boxed Values. We don’t do it here because it: (a) would be cheating,
(b) wouldn’t tell us how to implement the same feature in a language with-
out boxes, (c) doesn’t necessarily carry over to other mutation operations,
and (d) most of all, doesn’t really give us insight into what is happening
here.

56



It is nevertheless useful to understand, not least because you may find it
a useful strategy to adopt when implementing your own language. There-
fore, alter the implementation to obey this strategy. Do you still need
store-passing style? Why or why not?

8.2 Variables
Now that we’ve got structure mutation worked out, let’s consider the other case: vari-
able mutation.

8.2.1 Terminology

First, our choice of terms. We’ve insisted on using the word “identifier” before because
we wanted to reserve “variable” for what we’re about to study. In Java, when we say
(assuming x is locally bound, e.g., as a method parameter)

x = 1;

x = 3;

we’re asking to change the value of x. After the first assignment, the value of x is 1;
after the second one, it’s 3. Thus, the value of x varies over the course of the execution
of the method.

Now, we also use the term “variable” in mathematics to refer to function param-
eters. For instance, in f(y) = y + 3 we say that y is a “variable”. That is called a
variable because it varies across invocations; however, within each invocation, it has
the same value in its scope. Our identifiers until now have corresponded to this notion
of a variable. In contrast, programming variables can vary even within each invocation, If the identifier was

bound to a box,
then it remained
bound to the same
box value. It’s the
content of the box
that changed, not
which box the
identifier was
bound to.

like the Java x above.
Henceforth, we will use variable when we mean an identifier whose value can

change within its scope, and identifier when this cannot happen. If in doubt, we might
play it safe and use “variable”; if the difference doesn’t really matter, we might use
either one. It is less important to get caught up in these specific terms than to understand
that they represent a distinction that matters [REF].

8.2.2 Syntax

Whereas other languages overload the mutation syntax (= or :=), in Racket they are
kept distinct: set! is used to mutate variables. This forces Racket programmers to
confront the distinction we introduced at the beginning of section 8. We will, of course,
sidestep these syntactic issues in our core language by using different constructs for
boxes and for variables.

The first thing to note about variable mutation is that, although it too has two sub-
terms like box mutation (setboxC), its syntax is fundamentally different. To under-
stand why, let’s return to our Java fragment:

x = 3;

57



In this setting, we cannot write an arbitrary expression in place of x: we must literally
write the name of the identifier itself. That is because, if it were an expression position,
then we could evaluate it, yielding a value: for instance, if x were previously bound to
1, this would be tantamout to writing the following statement:

1 = 3;

But this is, of course, nonsensical! We can’t assign a new value to 1, and indeed 1 is
pretty much the definition of immutable. Thus, what we instead want is to find where
x is in the store, and change the value held over there.

Here’s another way to see this. Suppose the local variable o were bound to some
String object; let’s call this object s. Say we write

o = new String("a new string");

Are we trying to change s in any way? Certainly not: this statement intends to leave
s alone. It only wants to change the value that o is referring to, so that subsequent
references evaluate to this new string object instead.

8.2.3 Interpreting Variables

We’ll start by reflecting this in our syntax:

(define-type ExprC

[numC (n : number)]

[varC (s : symbol)]

[appC (fun : ExprC) (arg : ExprC)]

[plusC (l : ExprC) (r : ExprC)]

[multC (l : ExprC) (r : ExprC)]

[lamC (arg : symbol) (body : ExprC)]

[setC (var : symbol) (arg : ExprC)]

[seqC (b1 : ExprC) (b2 : ExprC)])

Observe that we’ve jettisoned the box operations, but kept sequencing because it’s
handy around mutation. Importantly, we’ve now added the setC case, and its first sub-
term is not an expression but the literal name of a variable. We’ve also renamed idC to
varC.

Because we’ve gotten rid of boxes, we can also get rid of the special box values.
When the only kind of mutation you have is variables, you don’t need new kinds of
values.

(define-type Value

[numV (n : number)]

[closV (arg : symbol) (body : ExprC) (env : Env)])

As you might imagine, to support variables we need the same store-passing style
that we’ve seen before (section 8.1.7), and for the same reasons. What differs is in pre-
cisely how we use it. Because sequencing is interpreted in just the same way (observe

58



that the code for it does not depend on boxes versus variables), that leaves us just the
variable mutation case to handle.

First, we might as well evaluate the value expression and obtain the updated store:
<setC-case> ::=

[setC (var val) (type-case Result (interp val env sto)

[v*s (v-val s-val)

<rest-of-setC-case>])]

What now? Remember we just said that we don’t want to fully evaluate the vari-
able, because that would just give the value it is bound to. Instead, we want to know
which memory location it corresponds to, and update what is stored at that memory
location; this latter part is just the same thing we did when mutating boxes:

<rest-of-setC-case> ::=

(let ([where (lookup var env)])

(v*s v-val

(override-store (cell where v-val)

s-val)))

The very interesting new pattern we have here is this. When we added boxes, in
the idC case, we looked up an identifier in the environment, and immediately fetched
the value at that location from the store; the composition yielded a value, just as it
used to before we added stores. Now, however, we have a new pattern: looking up
an identifier in the environment without subsequently fetching its value from the store.
The result of invoking just lookup is traditionally called an l-value, for “left-hand-
side (of an assignment) value”. This is a fancy way of saying “memory address”, and
stands in contast to the actual values that the store yields: observe that it does not
directly correspond to anything in the type Value.

And we’re done! We did all the hard work when we implemented store-passing
style (and also in that application allocated new locations for variables).

8.3 The Design of Stateful Language Operations
Though most programming languages include one or both kinds of state we have stud-
ied, their admission should not be regarded as a trivial or foregone matter. On the one
hand, state brings some vital benefits:

• State provides a form of modularity. As our very interpreter demonstrates, with-
out explicit stateful operations, to achieve the same effect:

– We would need to add explicit parameters and return values that pass the
equivalent of the store around.

– These changes would have to be made to all procedures that may be in-
volved in a communication path between producers and consumers of state.

59



Thus, a different way to think of state in a programming language is that it is an
implicit parameter already passed to and returned from all procedures, without
imposing that burden on the programmer. This enables procedures to commu-
nicate “at a distance” without all the intermediaries having to be aware of the
communication.

• State makes it possible to construct dynamic, cyclic data structures, or at least to
do so in a relatively straightforward manner (section 9).

• State gives procedures memory, such as new-loc above. If a procedure could not
remember things for itself, the callers would need to perform the remembering
on its behalf, employing the moral equivalent of store-passing. This is not only
unwieldy, it creates the potential for a caller to interfere with the memory for
its own nefarious purposes (e.g., a caller might purposely send back an old store,
thereby obtaining a reference already granted to some other party, through which
it might launch a correctness or security attack).

On the other hand, state imposes real costs on programmers as well as on programs
that process programs (such as compilers). One is “aliasing”, which we discuss later
[REF]. Another is “referential transparency”, which too I hope to return to [REF].
Finally, we have described above how state provides a form of modularity. However,
this same description could be viewed as that of a back-channel of communication that
the intermediaries did not know and could not monitor. In some (especially security
and distributed system) settings, such back-channels can lead to collusion, and can
hence be extremely dangerous and undesirable.

Because there is no optimal answer, it is probably wise to include mutation opera-
tors but to carefully delinate them. In Standard ML, for instance, there is no variable
mutation, because it is considered unnecessary. Instead, the language has the equiva-
lent of boxes (called refs). One can easily simulate variables using boxes (e.g., see
new-loc and consider how it would be written with variables instead), so no expres-
sive power is lost, though it does create more potential for aliasing than variables alone
would have ([REF aliasing]) if the boxes are not used carefully.

In return, however, developers obtain expressive types: every data structure is con-
sidered immutable unless it contains a ref, and the presence of a ref is a warning to
both developers and programs (such as compilers) that the underlying value may keep
changing. Thus, for instance, if b is a box, a developer should be aware that replacing
all instances of (unbox b) with v, where v is bound to (unbox b), is unwise: the
former always fetches the current value in the box, while the latter may be referring
to an older content. (Conversely, if the developer wants the value at a certain point in
time, oblivious to future mutations to the box, they should be sure to retrieve and bind
it rather than always use unbox.)

8.4 Parameter Passing
In our current implementation, on every function call, we allocate a fresh location in
the store for the parameter. This means the following program

60



(let ([f (lambda (x) (set! x 3))])

(let ([y 5])

(begin

(f y)

y)))

evaluates to 5, not 3. That is because the value of the formal parameter x is held
at a different location than that of the actual parameter y, so the mutation affects the
location of x, leaving y unscathed.

Now suppose, instead, that application behaved as follows. When the actual pa-
rameter is a variable, and hence has a location in memory, instead of allocating a new
location for the value, it simply passes along the existing one for the variable. Now
the formal parameter is referring to the same store location as the actual: i.e., they
are variable aliases. Thus any mutation on the formal will leak back out into the call-
ing context; the above program would evaluate to 3 rather than 5. These is called a
call-by-reference parameter-passing strategy. Instead, our

interpreter
implements
call-by-value, and
this is the same
strategy followed
by languages like
Java. This causes
confusion because
when the value is
itself mutable,
changes made to the
value in the callee
are observed by the
caller. However,
that is simply an
artifact of mutable
values, not of the
calling strategy.
Please avoid this
confusion!

For some years, this power was considered a good idea. It was useful because
programmers could write abstractions such as swap, which swaps the value of two
variables in the caller. However, the disadvantages greatly outweigh the advantages:

• A careless programmer can alias a variable in the caller and modify it without
realizing they have done so, and the caller may not even realize this has happened
until some obscure condition triggers it.

• Some people thought this was necessary for efficiency: they assumed the alter-
native was to copy large data structures. However, call-by-value is compatible
with passing just the address of the data structure. You only need make a copy
if (a) the data structure is mutable, (b) you do not want the caller to be able to
mutate it, and (c) the language does not itself provide immutability annotations
or other mechanisms.

• It can force non-uniform and hence non-modular reasoning. For instance, sup-
pose we have the procedure:

(define (f g)

(let ([x 10])

(begin

(g x)

...)))

If the language were to permit by-reference parameter passing, then the program-
mer cannot locally—i.e., just from the above code—determine what the value of
x will be in the ellipses.

At the very least, then, if the language is going to permit by-reference parameters, it
should let the caller determine whether to pass the reference—i.e., let the callee share
the memory address of the caller’s variable—or not. However, even this option is not

61



quite as attractive as it may sound, because now the callee faces a symmetric prob-
lem, not knowing whether its parameters are aliased or not. In traditional, sequential
programs this is less of a concern, but if the procedure is reentrant, the callee faces
precisely the same predicaments.

At some point, therefore, we should consider whether any of this fuss is worthwhile.
Instead, callers who want the callee to perform a mutation could simply send a boxed
value to the callee. The box signals that the caller accepts—indeed, invites—the callee
to perform a mutation, and the caller can extract the value when it’s done. This does
obviate the ability to write a simple swapper, but that’s a small price to pay for genuine
software engineering concerns.

9 Recursion and Cycles: Procedures and Data
Recursion is the act of self-reference. When we speak of recursion in programming
languages, we may have one of (at least) two meanings in mind: recursion in data, and
recursion in control (i.e., of program behavior—that is to say, of functions).

9.1 Recursive and Cyclic Data
Recursion in data can refer to one of two things. It can mean referring to something of
the same kind, or referring to the same thing itself.

Recursion of the same kind leads to what we traditionally call recursive data. For
instance, a tree is a recursive data structure: each vertex can have multiple children,
each of which is itself a tree. But if we write a procedure to traverse the nodes of a tree,
we expect it to terminate without having to keep track of which nodes it has already
visited. They are finite data structures.

In contrast, a graph is often a cyclic datum: a node refers to another node, which
may refer back to the original one. (Or, for that matter, a node may refer directly to
itself.) When we traverse a graph, absent any explicit checks for what we have already
visited, we should expect a computation to diverge, i.e., not terminate. Instead, graph
algorithms need a memory of what they have visited to avoid repeating traversals.

Adding recursive data, such as lists and trees, to our language is quite straightfor-
ward. We mainly require two things:

1. The ability to create compound structures (such as nodes that have references to
children).

2. The ability to bottom-out the recursion (such as leaves).

Exercise

Add lists and binary trees as built-in datatypes to the programming lan-
guage.

Adding cyclic data is more subtle. Consider the simplest form of cyclic datum, a
cell referring back to itself:

62


